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Signals, systems, acoustics
and the ear

Pitch & Binaural listening
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Part I: Auditory frequency selectivity
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The auditory periphery as a signal
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auditory filters & channels
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Auditory filters on linear & log frequency scales
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A complex periodic wave
(40 equal-amplitude harmonics of 200 Hz)
through an auditory-like filter bank



The complex periodic wave
(20 equal-amplitude harmonics of ? Hz)
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Auditory filtering of a harmonic complex
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Auditory filter bandwidth varies across frequency

Auditory filtering of a complex signal

Input spectrum (harmonic complex with fundamental of 100Hz)
amplitude (dB)

s

1000 3500 4000
frequency (Hz)
Filter the signal
amplitude (dB)
T T T T
ok 4
20| =
| 1 |
500 1000 1500 2000 2as00 2000 3500 4000
frequency (Hz)
amplitude (dB)
T T T T
ok 4
] ‘ } ‘ |
" 300 1000 1500 2000 2500 3000 3500 4000
frequency (Hz)
e — ———

single few many
harmonic harmonics harmonics

Temporal aspects of filter outputs
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Part II:
The auditory nerve
phase locks to low-frequency tones

Spikes

Time
Stimulus waveform (0.3 kHz)

Not the same as firing rate!

Evans (1975)



Repeat:

Not the same as firing rate!

as previously: 9 spikes

faster. 12 spikes

slower: 4 spikes
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Time

Time



Constructing an interval histogram

Stimulus waveform (0.3 kHz)
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Phase locking is limited to lower
frequencies
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FIG. 10. Synchrony coefficient for 315 neurons as measured by D. H.
Johnson who provided data for this plot (courtesy AIP Press).



Neural stimulation to a low
frequency tone

Stimulus
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Sound energy propagates to the characteristic place of the tone
where it causes deflection of the cochlear partition. Neural spikes,
when they occur, are synchronized to the peaks of the local
deflections. The sum of these neural spikes tends to mimic the wave
shape of the local deflections.



Auditory Temporal Coding
(phase locking)

Neural responses are synchronised to the
input signal

— No synchrony at rates above ~ 1.5 kHz
— Important for the encoding of pitch

— Synchrony is to input after the band-pass
filtering of the basilar membrane



Pitch

e In speech

— Linguistic pitch variation conveys ...

e intonation, which indicates lexical stress and
aspects of syntax, etc

e |exical information in tone languages

— Paralinguistic (or indexical) information
e age and sex
e emotional affect

e In music, melody
e In environmental sounds?



Where are cues to pitch?

Output of high frequency
filters shows periodicity
corresponding to (FO)

First few harmonics are
also resolved

Harmonic at fundamental
frequency (FO)

Characteristics

of first-stage filters

Output waveforms
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Classical Place account of pitch

e Pitch of a complex sound determined by
position of peak in excitation pattern
due to basilar membrane response to

fundamental frequency (FO) component
. \

1\

60+
m
. 50
g 40l First 9 harmonics
2 of 200 Hz pulse
2 30 .
2 train

20F

10F

O

L L L 1L 1 L 1 Sl 1 L1 1 lil 1 1 \
200 300400600 1000 2000 300 200300400600 1000 2000 300
Centre frequency, Hz (log scale)
Excitation patterns Overall excitation
of each component pattern (harmonics
individually all present together)



The missing fundamental

Schouten (1938, 1940)
used a train of narrow

pulses (many harmonics). Wave form Spectrum
A Periodic impulse
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Pitch cues

e The harmonic at FO is NOT a primary cue

— Pitch doesn’t change when it is absent

e Periodicity at 1/F, from unresolved
harmonics is NOT a primary cue either

— Provides only a weak pitch percept



Where are cues to pitch?

Characteristics
of first-stage filters Output waveforms
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Binaural Hearing

e What does the auditory system gain from
having input from two ears rather than one?
— Localisation in azimuth
e determine the direction from which a sound is
coming

— Masking release

e under certain circumstances the auditory system can
detect sounds at lower levels when using two ears
instead of only one

e contributes to ‘cocktail party effect’



Duplex theory of sound localization

Interaural Time Difference ‘an* Interaural Level Difference 'qp*

(ITD) (ILD)

Sound reaches one ear first Sound is more intense in one
\ ear because of head shadow .
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Sound Localisation

We're very good at judging the But for pure tones localisation
location of broadband sounds errors increase for frequencies
around 2 kHz
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FIGURE 12.5 The judged location in the horizontal or
azimuthal cﬁrechon of a broadbanq noise source pre- FIGURE 124 Errors (in terms of percentage of judg-
sented at different locations. The diagonal straight line .. , . . .
ments made) in judging the location of a sinusoidal sound

represents perfect judgments (data from one listener, see ) )
source shown as a function of frequency. Adapted with

Figure 12.9). Adapted with permission from Wightman
and Kistler (1989b). permission from Stevens and Newman (1936).



Sound Localisation

e ILDs dominate for high
frequencies

— Head shadow affects
high frequencies much
more than low

e ITDs dominate for low
frequencies

— ITDs become ambiguous
when frequency becomes
too high (in relation to
time for sound to travel
through head)
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FIGURE 12.8 A 1666-Hz tone presented to the right side
of a listener so that it reaches the right ear 0.6 msec before
it reaches the left ear. (Top) Sinusoid at right ear; (Bottom)
sinusoid at left ear. After the first peak (A), the waveforms
arriving at each ear are in phase, which would indicate
that the sound is in front rather than to the right.



| ocalisation for elevation is not binaural
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W—N‘W

528

Gain (dB)

Eﬂ-] -
o

Z 4 2

FIGi. 1. Darechonal transter functions (DTFs) for directions on the frontal
midline at the elevations indicated relative to the honzontal plane. Left and
right panels show DTFs measured from the nght ears of subjects 535 and
507, respectively. Numbers 1 through 4 indicate spectral notches discussed
m the text.

Because there are no or
few interaural differences

Changes in spectrum
appear to be crucial, in
particular spectral notches

Middlebrooks 1999 JASA:
106 (3)



Masking Release -
Binaural Masking Level Difference (BMLD)

3 stimulus configurations

— Monotic: one ear only

— Diotic: identical in each ear
— Dichotic: different in each ear

e No differences in thresholds for a masked
signal (a signal in noise) between monotic
and djotic presentations...

e ...but a masked signal can be easier to detect
with dichotic presentation



Binaural Masking Level Difference (BMLD)

Measure the threshold of a tone in noise
Tone

presented to one ear only Noise

e Present the identical noise to the other ear as
well (signal still only in one ear) Tone

. Noise
Noise

e The threshold will now be lower

— Even though all we've done is add more
noise!



Binaural Masking Level Difference (BMLD)

o Difference in threshold for 16
tone presented out of phase
between ears vs in phase.
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between M,S; and M,S, conditions (MLD) plotted as a
function of signal frequency. Adapted with permission

e BMLD relies on ITDs rom ekt 1951



Summary

e Temporal coding of frequency of acoustic

components (constrained by the degree of
place coding)

— Crucial to encoding of pitch

e TWwO ears are better than one!



